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Abstract. Geometrical effects occurring in the cyclic evolution of twofold degenerate two-level
system are considered. A projector representation for the objects involved (Hamiltonian, evolution
operator) is constructed. The explicit expressions for connections and curvatures are quoted.
Particular cases are considered and found to be in full correspondence with previously obtained
results.

1. Introduction

It is well known [1] that during the cyclic adiabatic evolution multi-level (quantum) system
acquires the geometric phase factor, or Berry’s phase. Simon has shown [2] that it is precisely
the holonomy in a Hermitian line bundle since the adiabatic theorem naturally defines a
connection in such a bundle. In the case of degenerated systems this factor is essentially non-
Abelian [3]. Geometric properties of Berry’s phase for multi-level systems has been widely
studied (see, for instance, [4]) and it has been found [5] that its calculation often reduces to
the explicit calculation of Riemannian connections in bundles over complex Grassmannian
manifolds. The general group-theoretical approach to the two-level system withm-fold and
n-fold degenerate respective levels has been applied in [6]. However, the common expressions
for the connection and geometric phase should be adapted for certain physical problems and
the question about the appropriate parametrization arises.

In this paper we concentrate on the investigation of the two-level system with twofold
degeneracy of each level. The specific character of the problem allows us to introduce a
quaternionic representation for the physical objects involved (evolution operator, Hamiltonian).
Not only does it simplify the calculations, but it also permits us to extract easily some particular
cases.

The first one corresponds to the special form of the two-level twofold degenerate
Hamiltonian which: (a) is employed to manage the adiabatic evolution of a fermion system with
time-reversal invariance, e.g. two Kramers doublets [7]; (b) is equivalent to the Hamiltonian
of a system with quadrupole interaction [8, 9]. Mathematical aspects of similar Hamiltonians
have been discussed in [10].

The second particular case is the system with one twice-degenerate level and another non-
degenerate one. Such a model has been considered recently [11–13], and here we recover the
already known results.
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It is relevant to note that we shall use the technique of projector-valued operators which
appears to be one of the most powerful tools in gauge-field theory. This will allow us to obtain
straightforward expressions for curvatures as well as for connections.

2. Evolution of a twofold degenerate two-level system

2.1. The general form of the Hamiltonian

The Hamiltonian of the twofold degenerate two-level system at arbitrary time is given by

H(t) = U(t)H(0) U†(t) (1)

where

H(0) =
(

12 0
0 −12

)
. (2)

Without loss of generality one can think of the unitary evolution operatorU = exp(iM)
as taking values in the coset spaceU(4)/(U(2) × U(2)) = CG(4, 2), i.e. the complex
Grassmannian manifold. Then it can be represented due to

M =
(

0 B

B† 0

)
(3)

whereB ∈ gl(2,C). Because of the isomorphism betweengl(2,C) and the complex
quaternions algebra, one can putB = u + iv, u = u4e0 + ukek andv = v4e0 + vkek being real
quaternions.

We recall that the quaternions algebra is defined by the relations

ekel = εklmem − δkle0 e0ek = eke0 e2
0 = e0 (k, l, m = 1, 2, 3). (4)

The operation of quaternion conjugationū = u4e0− ukek is an antiautomorphism(uv = v̄ ū)
and it enables one to introduce the norm|u| = √uū, scalaruS = 1

2(u + ū) and vector
uV = 1

2(u− ū) parts of the quaternion. Further, we shall use aσ -matrix representation of the
basis (4):

e0 = 12 ek = −iσk. (5)

Then,

M(t) = γaua(t) + iγ5γava(t) (a = 1, . . . ,4) (6)

with the set ofγ -matrices chosen as

γk =
(

0 −iσk
iσk 0

)
γ4 =

(
0 1
1 0

)
γ5 =

(
1 0
0 −1

)
. (7)

Notice thatH(0) = γ5.

The minimal equation forM
(
M2

)
is

M4 − 2RM2 +
(
R2 − |r|2) = 0 (8)

whereR = |u|2 + |v|2 andr = 2(vū)V. Making use of it, one can calculate

U(t) = P+ cos
√
λ+ + P− cos

√
λ− + iM

(
P+

sin
√
λ+√
λ+

+ P−
sin
√
λ−√
λ−

)
(9)
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whereλ± = R ± |r| are the characteristic roots ofM2 andP± = 1
2(1±Q) are the projective

operators:P 2
± = P±, (P±)† = P±, P+P− = P−P+ = 0;

Q = i

(
n 0
0 k

)
n = (vū)V

|(vū)V | k = (ūv)V

|(ūv)V | .
Besides this,P± commute withM.

Taking these definitions into account, it is easy to deduce that

M2 = P+λ+ + P−λ−. (10)

We duplicate the above expressions in more usual terms

M2 = R + iγ56ab2vaub (11)

|r|Q = γ56ab2vaub (12)

6ab = 1
2[γa, γb] (13)

|r| = 2
√
|v|2|u|2 − (vaua)2. (14)

Verifying the identity

UH(0) = H(0) U† (15)

we find out that

H(t) = U2(t)H(0) = exp(2iM)H(0) (16)

where

U2 = P+ cos 2
√
λ+ + P− cos 2

√
λ− + 2iM

(
P+

sin 2
√
λ+

2
√
λ+

+ P−
sin 2
√
λ−

2
√
λ−

)
. (17)

Due to the remarkable property

iP±MH(0) = P±
(

0 −a±
ā± 0

)
(18)

with a± = v±nu being real quaternions and|a±|2 = λ±, the Hamiltonian (1) takes the form

H(t) = P+

 cos 2|a+| sin 2|a+|
|a+| a+

sin 2|a+|
|a+| ā+ − cos 2|a+|

 + P−

 cos 2|a−| sin 2|a−|
|a−| a−

sin 2|a−|
|a−| ā− − cos 2|a−|


= P+(cos 2|a+| γ5 + sin 2|a+| γax̂a) + P−(cos 2|a−|γ5 + sin 2|a−| γaŷa)

06 |a+|, |a−| 6 1
2π. (19)

Defining

tan|a+| = |x| tan|a−| = |y| (20)
a+

|a+| =
x

|x| ≡ x̂
a−
|a−| =

y

|y| ≡ ŷ (21)

we obtain

H = P+H0(x) + P−H0(y) (22)

where

H0(x) = 1

1 + |x|2
(

1− |x|2 2x
2x̄ −(1− |x|2)

)
(23)
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andP± are expressed throughn andk which have in the new notation the following form:

n = (xȳ)V

|(xȳ)V | k = (ȳx)V

|(ȳx)V | . (24)

It is relevant to note thatP± commute with bothH0(x) andH0(y).
Expression (22) defines the most general form of the Hamiltonian which manages the

dynamics of twofold degenerate two-level system. It depends on eight parameters—xa and
ya—which are assumed to vary slowly in time. The eigenstate problem posed in the adiabatic
approximation

H(t)|9(t)〉 = En(t)|9(t)〉 (25)

can be readily solved: the columns of the evolution operator are these eigenstates

U = P+U0(x) + P−U0(y) (26)

U0(x) = 1√
1 + |x|2

(
1 −x
x̄ 1

)
= cos|a+| + sin|a+|γaγ5x̂a. (27)

The eigenvalues areE±(t) = constant= ±1, +1, corresponding to the first two columns and
−1 to the second ones.

2.2. Connections and Berry’s phases

If we consider the problem in the adiabatic limit, then, according to [1–3], during the cyclic
evolution a system acquires a phase factor which consists of two parts: dynamical and
geometrical. The latter is an element of the holonomy group and depends on the path in
parameters space only:

V [C] = P exp

(
−
∮
C

Aα(r(τ ))
drα

dτ
dτ

)
. (28)

The connectionAα is determined with help of eigenstates{|ni〉} forming the linear
subspace corresponding to the same eigenvalue:

(Aα)ij = 〈ni | ∂
∂rα
|nj 〉. (29)

In our case it is natural to define

A = (U† dU
)

11

where subscripts denote the corresponding 2× 2-matrix blocks (quaternions in theσ -matrix
representation). SoA is a 1-form taking values in the Lie algebrau(2). It is expected to
decompose intou(2) = su(2)⊕ u(1) parts:

A = A− iA0. (30)

The calculations yield

A = n(nZ(+)
)

+ (W − n(nW )) + c[n dn] (31)

A0 =
(
nZ(−)) (32)

where

Z(±) = 1

2

(
(x dx̄)V
1 + |x|2 ±

(y dȳ)V
1 + |y|2

)
(33)

W = 1

2

(y dx̄)V + (x dȳ)V√
1 + |x|2

√
1 + |y|2

(34)

c = 1

2

(
1 + (xȳ)S√

1 + |x|2
√

1 + |y|2
− 1

)
(35)
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and we think of vector quaternions in (31) as of simple 3-vectors and round and squared brackets
denote the usual operations of vector algebra: scalar and vector products, respectively.

3. Projector representation and curvatures

3.1. Hamiltonian in terms of projector-valued operators

The technique involving projector-valued operators is a powerful tool in gauge fields theory on
the whole [14]. The remarkable properties of the system in question, namely the appearance of
the projective operators in the Hamiltonian (22), encourage one to study its structure in more
detail. It turns out [15, 16] thatH0(x) (23) can be presented in terms of projectors:

H0(x) = P1(x)− P2(x) (36)

P1(x) = 1

1 + |x|2
(

1 x

x̄ |x|2
)

P2(x) = 1

1 + |x|2
( |x|2 −x
−x̄ 1

)
. (37)

So we obtain the expression for the Hamiltonian (22) via projective operators

H = P+(P1(x)− P2(x)) + P−(P1(y)− P2(y))

= [P+P1(x) + P−P1(y)] − [P+P2(x) + P−P2(y)]. (38)

We introduce

5+ = P+P1(x) + P−P1(y) (39)

5− = P+P2(x) + P−P2(y) (40)

where 5± project onto the orthogonal subspaces corresponding to eigenvalues±1,
respectively. So5+5− = 5−5+ = 0. Notice also thatP± commute withPq(z), q =
1, 2, z = x, y.

3.2. Curvatures

The above representation appears to be very appropriate for the description of the geometry of
the problem. We start from the left-invariant Maurer–Cartan form

2 = U† dU =
(
A+ −L
L† A−

)
(41)

which satisfies the equation

d2 +2 ∧2 = 0. (42)

We find that [17]

L ∧ L† = dA+ +A+ ∧ A+ ≡ F+

−dL = A+ ∧ L +L ∧ A− (43)

L† ∧ L = dA− +A− ∧ A− ≡ F−.
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Let us define the following forms:

J
def= 1

2[2, γ5] =
(

0 L

L† 0

)
(44)

�
def= J ∧ J =

(
L ∧ L† 0

0 L† ∧ L
)
=
(
F+ 0
0 F−

)
. (45)

Notice that

d5σ = d1
2(1 +σH) = 1

2σ
(
dU γ5U

† +Uγ5 dU†
)

= 1
2σU(2γ5− γ52)U

† = σUJU† (46)

whereσ = + or−. Then

d5σ ∧ d5σ = U(J ∧ J )U† (47)

and

� = U†(d5σ ∧ d5σ)U. (48)

Finally, we obtain the expression for curvatures

Fσ = TrH
(

1
2(1 +σγ5)�

1
2(1 +σγ5)

)
. (49)

The trace is assumed to be taken over 2× 2 matrices defined over the body of quaternionsH.
Noticing that

5σ = 1
2(1 +σH) = U 1

2(1 +σγ5)U
† (50)

we come to the well known formula [9]

Fσ = TrH
(
U†5σ(d5σ ∧ d5σ)5σU

)
. (51)

With F± being fully determined byJ , we quote the expression for it:

J = (√α+P+ dX +
√
α−P− dY

)(√
α+P+ +

√
α−P−

)
+ dP+ β(X − Y )

= α+P+ dXP+ + α− P− dY P− + β(X dP+ P− + P− dP+X) + β(Y dP− P+ + P+ dP− Y )
(52)

where

X =
(

0 x

x̄ 0

)
= γaxa Y =

(
0 y

ȳ 0

)
= γaya (53)

α+ = 1

1 + |x|2 α− = 1

1 + |y|2 β = √α+α−. (54)

The corresponding 2-form� can also be decomposed intosu(2) andu(1) parts:

� = Ω− i�0. (55)

4. Particular case:SU (2) Yang–Mills instanton overS4

If we putx = y in (22) and (26) then

H = H0(x) (56)

and

U = U0(x). (57)

Pure quaternion structure arises (there is no explicit i in the expression) and the
corresponding Hermitian bundle becomes equivalent to that associated with a quaternionic



Evolution of twofold degenerate two-level system 1079

Hopf bundleπ : S7→ S4, S4 being the base andSU(2) = Sp(1) being the structure group.
As one can expect theSU(2) Yang–Mills (anti)instantonic potential appears as the connection
in this bundle:

A+ =
(
U† dU

)
11 =

(x dx̄)V
1 + |x|2 (58)

A− =
(
U† dU

)
22 =

(x̄ dx)V
1 + |x|2 (59)

((A0)+ = (A0)− = 0 as it must be).
Equation (52) takes the form

J = 1

1 + |x|2 dX (60)

which allows one to calculate readily the curvatures of instantonic and anti-instantonic
potentials

� = 1(
1 + |x|2)2

(
dx ∧ dx̄ 0

0 dx̄ ∧ dx

)
=
(
Finst 0

0 Fanti-inst

)
. (61)

The geometric phase for the Hamiltonian (56) has been studied in [9, 10, 16]. It takes
place in certain physical models, for instance, in time-reversal invariant systems of fermions
(adiabatic evolution of two Kramers doublets [7]), systems with quadrupole interaction [8].
(For more details see [9].)

5. Particular case: Hermitian bundle overCP2

Since the complex projective spaceCP2 is the submanifold of the complex Grassmannian
manifoldCG(4, 2), a mathematical description of the Hermitian bundle overCG(4, 2) contains
the description of that overCP2 as a particular case. It should be understood that physically
these problems are essentially different, the particular is meant in a mathematical sense only.
The latter bundle corresponds to the cyclic evolution of the system with one twice-degenerate
level and another non-degenerate one. This problem has been studied recently [11–13] and
the expressions for both Abelian (u(1)) and non-Abelian (su(2)) parts of the connection have
been obtained. We shall demonstrate how to recover them in our framework and discuss
some features of the connections concerned which become transparent due to the chosen
parametrization.

It is obvious that the evolution operator for the system in question is presented as

U = exp

 0 0 ξ1

0 0 ξ2

−ξ ∗1 −ξ ∗2 0

 (62)

whereξ1 = a1 + ib1 andξ2 = a2 + ib2 are arbitrary complex numbers.
If we add auxiliary row and column of zeros

U = exp


0 0 ξ1 0
0 0 ξ2 0
−ξ ∗1 −ξ ∗2 0 0

0 0 0 0

 (63)



1080 M V Pletyukhov and E A Tolkachev

then the evolution operator will have the following structure:

U =


3× 3

meaningful
block

0
0
0

0 0 0 1

 . (64)

If we identify

2a1 = u3 = −v4 (65)

2b1 = u4 = v3 (66)

2a2 = u1 = −v2 (67)

2b2 = u2 = v1 (68)

then instead of (63) we can use (9) with the restriction on the parameters

(iu− v) 1
2(1− ie3) = 0. (69)

To make it clear, notice that projector1
2(1− ie3) in σ -matrix representation has the form(

0 0
0 1

)
.

The condition (9) leads to

v = ue3 (70)

ūv = |u|2e3 vū ≡ 1
2r = ue3ū r̂ = ue3ū

|u|2 (71)

and (9) takes the form

U = P+ cos 2|v| + P− + P+
sin 2|v|

2|v|
(

0 −2v
2v̄ 0

)
(72)

or, in parametrization (20) and (21),

U = P+
1√

1 + |x|2
(

0 −x
x̄ 0

)
+ P− = P+U0(x) + P− (73)

with

P± = 1

2

(
1± ir̂ 0

0 1± ie3

)
r̂ = x̂e3 ˆ̄x. (74)

The initial Hamiltonian of the system is

H(0) = 3
2γ5− 1

2 =


1

1
−2

−2

 (75)

and we recall that only left upper 3× 3 block is meaningful for us. At arbitrary time

H(t) = 1

2
(
1 + |x|2)

(
2− |x|2 − 3ir̂|x|2 3x(1 + ie3)

3(1 + ie3)x̄ 2|x|2 − 1− 3ie3

)
(76)

and passing to aσ -matrix representation one should also extract the necessary block.
From (31) and (32) we find non-Abelian

A =
(

1− 1√
1 + |x|2

)
x̂ d ˆ̄x − r̂

(
1

2

|x|2
1 + |x|2 +

1√
1 + |x|2

− 1

)
( ˆ̄x dx̂)3 (77)
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and Abelian

A0 = −1

2

( ˆ̄x dx̂)3
1 + |x|2 e0 (78)

parts of the connection.( ˆ̄x dx̂)3 denotes the third component of the vector quaternion( ˆ̄x dx̂)V.
To make these expressions more convenient for further analysis, let us introduce two other

parametrizations according to

1√
1 + |x|2

≡ cos 2|v| = |z|
2 − 1

|z|2 + 1
= 1− |w|2

1 + |w|2 (79)

|x|√
1 + |x|2

≡ sin 2|v| = 2|z|
|z|2 + 1

= 2|w|
1 + |w|2 (80)

|z| = cot|v| 16 |z| <∞
|w| = 1/|z| = tan|v| 0< |w| 6 1.

Then (77) and (78) become

A = 2

1 + |z|2 ẑ dˆ̄z + r̂
2(

1 + |z|2)2 ( ˆ̄z dẑ)3

= 2(
1 + |z|2)|z|2 (z dz̄)V + r̂

2(
1 + |z|2)2|z|2 (z̄ dz)3

= 2|w|2
1 + |w|2 ŵ d ˆ̄w + r̂

2|w|4(
1 + |w|2)2 ( ˆ̄w dŵ)3

= 2

1 + |w|2 (w dw̄)V + r̂
2|w|2(

1 + |w|2)2 (w̄ dw)3 (81)

A0 = − 2(z̄ dz)3(
1 + |z|2)2 = − 2(w̄ dw)3(

1 + |w|2)2 (82)

whereẑ = z/|z| andŵ = w/|w|. It is evident thatA0 is the same in both parametrizations. If
we perform the local gauge transformation

A′ = −r̂Ar̂ − r̂ dr̂ = 2|z|2
1 + |z|2 ẑ dˆ̄z + r̂

2|z|4(
1 + |z|2)2 ( ˆ̄z dẑ)3 (83)

we will see thatA(z) = A′(w).
Let us perform another gauge transformation

A′′ = ˆ̄zAẑ + ˆ̄z dẑ = |z|
2 − 1

|z|2 + 1
ˆ̄z dẑ +

2(|z|2 + 1
)2 e3( ˆ̄z dẑ)3. (84)

PotentialA′′ has the same functional dependence onz as globally equivalent to it

A′′′ = −e3A
′′e3 = |w|

2 − 1

|w|2 + 1
ˆ̄w dŵ +

2(|w|2 + 1
)2 e3( ˆ̄w dŵ)3 (85)

has onw. Notice that the transformation|z| → |w| = 1/|z| is not full inversion. To become
the latter, it should be composed with transformationẑ→ ˆ̄z.
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In conclusion, we quote the expressions for curvatures (in the initial gauge). They are
taken from (43)–(45) and (52) with the restriction (69) being valid:

L = 1

1 + |x|2
1 + ir̂

2
dx

1 + ie3

2
(86)

F+ = L ∧ L† = 1(
1 + |x|2)2 1 + ir̂

2
dx

1 + ie3

2
∧ dx̄

1 + ir̂

2

= 1

|x|(1 + |x|2)2 (i − r̂) d|x| ∧ (x̄ dx)3 (87)

F− = L† ∧ L = 1 + ie3

2

(
− 2i

|x|(1 + |x|2)2 d|x| ∧ (x̄ dx)3

)
1 + ie3

2
. (88)
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